Ecohydrologic controls on vegetation density and evapotranspiration partitioning across the climatic gradients of the central United States
نویسندگان
چکیده
Introduction Conclusions References Tables Figures ◭ ◮ ◭ ◮ Back Close Full Screen / Esc Papers published in Hydrology and Earth System Sciences Discussions are under open-access review for the journal Hydrology and Earth System Sciences Abstract Introduction Conclusions References Tables Figures ◭ ◮ ◭ ◮ Back Close Full Screen / Esc Abstract The soil-water balance and plant water use are investigated over a domain encompassing the central United States using the Statistical-Dynamical Ecohydrology Model (SDEM). The seasonality in the model and its use of the two-component Shuttleworth-Wallace canopy model allow for application of an ecological optimality hypothesis in 5 which vegetation density, in the form of peak green leaf area index (LAI), is maximized, within upper and lower bounds, such that, in a typical season, soil moisture in the latter half of the growing season just reaches the point at which water stress is experienced. Another key feature of the SDEM is that it partitions evapotranspiration into transpira-tion, evaporation from canopy interception, and evaporation from the soil surface. That 10 partitioning is significant for the soil-water balance because the dynamics of the three processes are very different. The partitioning and the model-determined peak in green LAI are validated based on observations in the literature, as well as through the calculation of water-use efficiencies with modeled transpiration and large-scale estimates of grassland productivity. Modeled-determined LAI are seen to be at least as accu-15 rate as the unaltered satellite-based observations on which they are based. Surprising little dependence on climate and vegetation type is found for the percentage of total evapotranspiration that is soil evaporation, with most of the variation across the study region attributable to soil texture and the resultant differences in vegetation density. While empirical evidence suggests that soil evaporation in the forested regions of the 20 most humid part of the study region is somewhat overestimated, model results are in excellent agreement with observations from croplands and grasslands. The implication of model results for water-limited vegetation is that the higher (lower) soil moisture content in wetter (drier) climates is more-or-less completely offset by the greater (lesser) amount of energy available at the soil surface. This contrasts with other modeling stud-25 ies which show a strong dependence of evapotranspiration partitioning on climate. Abstract Introduction Conclusions References Tables Figures ◭ ◮ ◭ ◮ Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion
منابع مشابه
Ecosystem processes at the watershed scale: Hydrologic vegetation gradient as an indicator for lateral hydrologic connectivity of headwater catchments
[1] Lateral water flow in catchments can produce important patterns in water and nutrient fluxes and stores and also influences the long-term spatial development of forest ecosystems. Specifically, patterns of vegetation type and density along hydrologic flow paths can represent a signal of the redistribution of water and nitrogen mediated by lateral hydrologic flow. This study explores the use...
متن کاملStatistical analysis of occurrence frequency of dust storms in Yazd province and its modeling based on climatic elements and vegetation cover
Introduction Dust storms as one of the environmental hazards of the arid regions of the globe, including the southern, southwestern, eastern and central parts of Iran, has caused many environmental problems that confirm the need for studying and crisis managing its in scientific and executive congresses. Therefore, the present study attempts to evaluate the effects of climate elements on tempe...
متن کاملQuantifying the Impacts of Environmental Factors on Vegetation Dynamics over Climatic and Management Gradients of Central Asia
Currently there is a lack of quantitative information regarding the driving factors of vegetation dynamics in post-Soviet Central Asia. Insufficient knowledge also exists concerning vegetation variability across sub-humid to arid climatic gradients as well as vegetation response to different land uses, from natural rangelands to intensively irrigated croplands. In this study, we analyzed the en...
متن کاملVegetation-precipitation controls on Central Andean topography
Climatic controls on fluvial landscapes are commonly characterized in terms of mean annual precipitation. However, physical erosion processes are driven by extreme events and are therefore more directly related to the intensity, duration, and frequency of individual rainfall events. Climate also influences erosional processes indirectly by controlling vegetation. In this study, we explore how i...
متن کامل